Just another WordPress site - Ruhr-Universität Bochum
2024
- A. Loew, H. Wang, T. Cerqueira et al. Training machine learning interatomic potentials for accurate phonon properties. Machine Learning: Science and Technology, 5, 045019, (2024)
- J. Schmidt, T. Cerqueira, A. Romero et al. Improving machine-learning models in materials science through large datasets. Materials Today Physics, 48, 101560, (2024)
- T. Cerqueira, Y. Fang, I. Errea et al. Searching materials space for hydride superconductors at ambient pressure. Advanced Functional Materials, 34, 2404043, (2024)
- M. Evans, J. Bergsma, A. Merkys et al. Developments and applications of the OPTIMADE API for materials discovery, design, and data exchange. Digital Discovery, 3, 1509–1533, (2024)
- H. Wang, T. Rauch, A. Tellez-Mora et al. Exploring flat-band properties in two-dimensional M3QX7 compounds. Physical Chemistry Chemical Physics, 26, 21558–21567, (2024)
- J. Jacobs, H. Wang, M. Marques et al. Ruddlesden–Popper oxyfluorides La2Ni1–xCuxO3F2 (0 ≤ x ≤ 1): Impact of the Ni/Cu ratio on the thermal stability and magnetic properties. Inorganic Chemistry, 63, 11317-11324, (2024)
- J. Jacobs, H. Wang, M. Marques et al. Ruddlesden–Popper Oxyfluorides La2Ni1–xCuxO3F2 (0 ≤ x ≤ 1): Impact of the Ni/Cu ratio on the structure. Inorganic Chemistry, 63, 6075–6081, (2024)
- A. Sanna, T. Cerqueira, Y. Fang et al. Prediction of ambient pressure conventional superconductivity above 80 K in hydride compounds. npj Computational Materials, 10, 44, (2024)
- K. Gao, W. Cui, J. Shi et al. Prediction of high- Tc superconductivity in ternary actinium beryllium hydrides at low pressure. Physical Review B, 109, 014501, (2024)
- T. Cerqueira, A. Sanna, M. Marques. Sampling the materials space for conventional superconducting compounds. Advanced Materials, 36, 2307085, (2024)