Just another WordPress site - Ruhr-Universität Bochum
Micro-macro modeling of tensile behavior of a friction stir welded hybrid joint of AlSi10Mg parts produced by powder bed fusion and casting
Additive manufacturing (AM) has gained considerable interest due to its ability to produce lightweight parts with hierarchical microstructures. However, the current constraints on the build chamber size in powder-bed fusion type AM processes limit its industrial application. A hybrid welded joint, consisting of an AM-processed and a conventionally manufactured part, can be employed to produce larger components. Due to the varying processing conditions, these hybrid welded joints contain a wide range of microstructural heterogeneities, which influences the mechanical properties of the joint. Using a numerical model to predict the mechanical behavior of welded joints by considering the microstructural variations is essential for the safe and reliable implementation of hybrid welded joints. This study aims to predict the local tensile behavior of each region of a hybrid friction-stir welded joint of AlSi10Mg produced by laser-based powder bed fusion and casting using a microstructure-sensitive model as well as the global tensile behavior by considering the properties of each region using a joint macroscopic model. The results from this modeling approach agree well with the experimental results. Therefore, this method can predict the mechanical behavior of hybrid welded joints and can establish the structure–property relationship in each weld region.